

SUNNY TRIPOWER CORE1

New Functions Available

New: Arc Fault Detection AFCI (<u>A</u>rc <u>F</u>ault <u>C</u>ircuit <u>I</u>nterruption)

Benefits

- **Protection against serial electric arcs** in the PV system installation
- No additional installation costs
 through integration in the inverter
- Easy to implement
 - no need for **external** components
- Tried-and-tested process: AFCI has been used for many years in Sunny Tripower / Sunny Boy US (UL 1699B-certified)
- Pioneering technology
 - already complies with IEC 63027 requirements

New: Arc Fault Detection AFCI (<u>Arc Fault Circuit Interruption</u>)

Implementation:

- Easy activation through parameterization in the web UI
- Accurate detection of electric arcs through spectral analysis via the noise-free DC signal thanks to the superior design
- Alerts by e-mail
- **Reliable DC interruption** when an electric arc is detected
- No downtime due to system shutdown thanks to automated restart of the inverter and continued detection

New: I-V Diagnosis of the PV Array

Benefits

- **Early and simple** detection of yield losses in the event of problems with the PV array
- Automatic measurement of the I-V curve (current/voltage curve)
- **Expanded offering** from our installers during system maintenance
- Inverter performs documentation tasks for the customer: Simple report function with graphical display contains all the most important PV array measurement data
- Integrated PDF and CSV export

New: I-V Diagnosis of the PV Array

Implementation

- **Current/voltage measurement** of all MPP trackers in the inverter at the "push of a button"
- **Visualization** of the I-V curves / measured values in the web UI
- Discrepancies with respect to the I-V characteristics potentially indicate problems in the PV array
- Further functional extensions are planned
 diagnosis directly via Sunny Portal and SMA Data Manager

							SMA
					/ N	EW SM	A _
Home Instantaneous val	ues Device parameters	Events	Device configurati	ion Data	PV-Diagnosis		
			PV- Diagnosis	14 <u>-</u>			
I_ma	ax				Sola Terr	12:43 25.09.2019 ar radiation: 160 W/r perature: 24°C	h ²
ØMPP-A ØMPP-8 ØMPP-C ØMPP-D							
					U_mp;) max	
Eingang	U_MPP [V]	I_MPP [A]	P_MPP [W]	U_leer [V]	I_sc [A]	Füllfaktor	
MPP-A	456	12	3987	600	8.2	0.73	
MPP-B	460	12	4210	600	9.74	0.72	
MPP-C MPP-D	436	12	4001 3999	589	6.45	0.71	
/ert			- Beschre	ibung	Export - naximaler Leistu	Stort	
יישי			Modulsp			19	
pp			Modulstr	om bei max.	Leistung		
npp			maximal	e Leistung			
oc			Leerlaufs	pannung			
c			Kurzschl	ussstrom			
illtaktor			Kennwer	t tür die Kurv	entorm		

New: I-V Diagnosis of the PV Array: Sample Curves

Ideal I-V curve

Ideal I-V curve

• No measures required

Characteristic deviations

Curve with deviations (e.g., typical for glass breakage)

• Check the modules in the string

Module string with shading

Check whether measures to prevent shading are possible

Maximum Reliability Thanks to SMA String Inverter Technology

- The integration of the new safety functions into the inverter ensures a reduced installation time and a greater reliability of the PV system thanks to the lower complexity of the installation (minimization of additional fault sources)
 A complete system. Everything from a single source.
- Module-based solutions ("MLPE": Module Level Power Electronics) are much harder to implement and can be more prone to faults due to the high number of system components

Thank you!

SMA UK

Studio G1, 307 Upper Fourth Street Wital Studios Milton Keynes MK9 1EH Tel. +44 1908 304 850

www.SMA-UK.com info@SMA-UK.com